We saw in a prior entry how to define database indexes on a set of columns so that all possible queries involving clauses of the form columni = valuei are accelerated by some index. We see now how to model this situation for an in-memory C++ container, which gives us the opportunity to use Boost.MultiIndex and show some template and preprocessor metaprogramming in action.
So, suppose we have the following struct:
struct element
{
int x1,x2,x3,x4;
};
and we are assigned the task of designing a container of elements
s along with efficient querying functions of the form:
typedef ... container;
template<int N>
struct field
{
field(int x):x(x){}
int x;
};
template<int N0>
const element* find(const container& c,const field<N0>& f0);
...
template<int N0,int N1,int N2,int N3>
const element* find(
const container& c,
const field<N0>& f0,const field<N1>& f1,
const field<N2>& f2,const field<N3>& f2);
so that operations like the following are possible:
container c;
...
// x3==10 && x1==20
find(c,field<3>(10),field<1>(20));
// x1==5 && x4==40 && x2==11
find(c,field<1>(5),field<4>(40),field<2>(11));
typedef member<element,int,&element::x1> key1;
typedef member<element,int,&element::x2> key2;
typedef member<element,int,&element::x3> key3;
typedef member<element,int,&element::x4> key4;
typedef multi_index_container<
element,
indexed_by<
ordered_non_unique<composite_key<element,key1,key3,key2,key4> >,
ordered_non_unique<composite_key<element,key4,key1,key3,key2> >,
ordered_non_unique<composite_key<element,key2,key1,key3,key4> >,
ordered_non_unique<composite_key<element,key4,key2,key1,key3> >,
ordered_non_unique<composite_key<element,key3,key2,key1,key4> >,
ordered_non_unique<composite_key<element,key4,key3,key2,key1> >
>
> container;
Actually, the combined composite keys are redundant, and we can shorten some of them. Also, we add a little instrumentation to the type for future use, so the final definition of container
is:
struct key1:member<element,int,&element::x1>,boost::mpl::int_<1>{};
struct key2:member<element,int,&element::x2>,boost::mpl::int_<2>{};
struct key3:member<element,int,&element::x3>,boost::mpl::int_<3>{};
struct key4:member<element,int,&element::x4>,boost::mpl::int_<4>{};
template<int>struct cover;
typedef multi_index_container<
element,
indexed_by<
ordered_non_unique<
tag<cover<1>,cover<13>,cover<123>,cover<1234> >,
composite_key<element,key1,key3,key2,key4>
>,
ordered_non_unique<
tag<cover<4>,cover<14>,cover<134> >,
composite_key<element,key4,key1,key3>
>,
ordered_non_unique<
tag<cover<2>,cover<12> >,
composite_key<element,key2,key1>
>,
ordered_non_unique<
tag<cover<24>,cover<124> >,
composite_key<element,key4,key2,key1>
>,
ordered_non_unique<
tag<cover<3>,cover<23> >,
composite_key<element,key3,key2>
>,
ordered_non_unique<
tag<cover<34>,cover<234> >,
composite_key<element,key4,key3,key2>
>
>
> container;
The
keyn
extractor derives from
boost::mpl::int_<n>
, which makes these types easily indexable. As for the
cover
tags, they simply indicate the different query formulas supported by each index using a straightforward coding technique: for instance, the second index covers the querying formulas
x4==v4 --> cover<4>
x1==v1 && x4==v4 --> cover<14>
x1==v1 && x3==v3 && x4==v4 --> cover<134>
To avoid ambiguities, cover numbers are coded assuming the attribute names appear in the order
x1
,
x2
,
x3
,
x4
, even if the tagged index does not respect this order in the specification of the composite key; also, when two different types cover the same formula, we assign the tag to only one of them. So, there are a total of 15 different tags, exactly as many as the number of different query formulas with up to 4 attributes.
cover_number
does the metaprogrammatic work of calculating a cover number from an
MPL sequence of
field<n>
types:
template<typename FieldSequence>
struct cover_number:
boost::mpl::fold<
typename boost::mpl::sort<FieldSequence>::type,
boost::mpl::int_<0>,
boost::mpl::plus<
boost::mpl::times<boost::mpl::_1,boost::mpl::int_<10> >,
boost::mpl::_2
>
>::type
{};
The following is a possible realization of the overload of find
with three fields:
template<int N0,int N1,int N2>
const element* find(
const container& c,
const field<N0>& f0,const field<N1>& f1,const field<N2>& f2)
{
// find the tag associated to the index conering our fields
typedef cover<
cover_number<
boost::mpl::vector_c<int,N0,N1,N2>
>::value
> tag;
// retrieve the index type
typedef typename container::index<tag>::type index_type;
// retrieve the type of the associated composite key extractor
typedef typename index_type::key_from_value composite_key_type;
// an MPL sequence containing the field types passed
typedef boost::mpl::vector<
field<N0>,field<N1>,field<N2>
> fields_type;
// get the index
const index_type& i=c.get<tag>();
// pack the field values into a tuple...
boost::tuple<int,int,int> t=boost::make_tuple(f0.x,f1.x,f2.x);
// ...and use it with i.find(), rearranging the tuple
// so that each field<n> matches its key<n> in the composite key
typename index_type::iterator it=i.find(
boost::make_tuple(
get<composite_key_type,fields_type,boost::mpl::int_<0> >(t),
get<composite_key_type,fields_type,boost::mpl::int_<1> >(t),
get<composite_key_type,fields_type,boost::mpl::int_<2> >(t)
)
);
if(it!=i.end())return &*it;
else return 0;
}
The only missing part is the get
template function, that accepts a composite key extractor type, an MPL sequence of fields, a position and a tuple of field values and returns the value associated to the field<n>
with the same n
as the key<n>
at the indicated position in the composite key extractor:
template<
typename CompositeKey,typename FieldSequence,
typename Pos,typename Tuple
>
int get(const Tuple& t)
{
typedef typename boost::tuples::element<
Pos::value,
typename CompositeKey::key_extractor_tuple
>::type key_at_pos;
const int M=
boost::mpl::distance<
typename boost::mpl::begin<FieldSequence>::type,
typename boost::mpl::find<
FieldSequence,
field<key_at_pos::value>
>::type
>::value;
return t.template get<M>();
}
The code is simpler than it might appear at first glance: if the key at the position Pos
of CompositeKey
is of the form key<n>
, M
is simply the distance from the beginning of FieldSequence
to the type key<n>
. The expression key_at_pos::value
takes advantage of the fact that each key<n>
is derived from boost::mpl::int_<n>
.
The different overloads of find
are entirely similar to the one we have just seen. Boost.Preprocessor allows us to generate the overloads without code repetition:
#define FIND_PARAM_MACRO(z,n,data) \
const field<BOOST_PP_CAT(N,n)>& BOOST_PP_CAT(f,n)
#define FIND_FIELD_MACRO(z,n,data) field<BOOST_PP_CAT(N,n)>
#define FIND_VALUE_MACRO(z,n,data) BOOST_PP_CAT(f,n).x
#define FIND_GET_MACRO(z,n,data) \
get<composite_key_type,fields_type,boost::mpl::int_<n> >(t)
#define DEFINE_FIND(num_fields) \
template<BOOST_PP_ENUM_PARAMS(num_fields,int N)> \
const element* find( \
const container& c, \
BOOST_PP_ENUM(num_fields,FIND_PARAM_MACRO,~)) \
{ \
typedef cover< \
cover_number< \
boost::mpl::vector_c<int, \
BOOST_PP_ENUM_PARAMS(num_fields,N) \
> \
>::value \
> tag; \
typedef typename container::index<tag>::type index_type; \
typedef typename index_type::key_from_value composite_key_type; \
typedef boost::mpl::vector< \
BOOST_PP_ENUM(num_fields,FIND_FIELD_MACRO,~) \
> fields_type; \
\
const index_type& i=c.get<tag>(); \
boost::tuple< \
BOOST_PP_ENUM_PARAMS(num_fields,int BOOST_PP_INTERCEPT) \
> t=boost::make_tuple( \
BOOST_PP_ENUM(num_fields,FIND_VALUE_MACRO,~) \
); \
typename index_type::iterator it=i.find( \
boost::make_tuple( \
BOOST_PP_ENUM(num_fields,FIND_GET_MACRO,~) \
) \
); \
if(it!=i.end())return &*it; \
else return 0; \
}
DEFINE_FIND(1)
DEFINE_FIND(2)
DEFINE_FIND(3)
DEFINE_FIND(4)
Although we have metaprogrammed the code for selecting and using the indices of an n-attribute container, still the definition of container
was done manually. The following is a very tough challenge for the reader: program a metafunction that accepts an integer n and produces a suitable multi_index_container
instantiation providing full query coverage for a struct with attributes x1
,...,xn
. Note that solving this challenge implies metaprogramming the permutation cover algorithm we devised some entries ago.